- News article -

Smart-MEMPHIS exploring energy harvesting for minimally invasive pacemakers

13 Mar 2015

Spinverse has joined eight other European companies, research institutes and universities in the smart-MEMPHIS project. The objective of the project is to develop new, autonomous modules for energy harvesting. Energy harvesting systems that are developed within the smart-MEMPHIS project will have many applications ranging from implantable pacemakers to aircrafts. In cardiac pacemakers, the energy generated by heart beats will be used to power the implanted devices, thus bringing significant benefits to patients and healthcare professionals alike.

Energy harvesting for minimally invasive pacemakers with enhanced life time

Currently, state-of-the-art pacing systems are implanted under the skin in the patient’s chest. They deliver pacing therapy via insulated wires that are positioned within the heart. In the near future, minimally invasive devices with advanced features will deliver therapy directly within the heart, enhancing patient quality of life (minimal scars, fewer complications related to device replacements, etc.) and reducing healthcare costs.

In order to develop these downsized, smart implantable medical devices, researchers must find a solution to the problem of device longevity. Because these types of devices need to be miniaturized in order to fit inside the chambers of the heart, there is limited space available for power sources. In addition, removing implanted systems from inside the heart is complex, so the number of device replacements needs to be limited. A self-powered implantable device would overcome these technological constraints. By developing modules for harvesting the energy generated by heart beats, the smart-MEMPHIS project will address these challenges and improve cardiac patients’ daily lives.

Early damage detection for safer aircrafts

The medical device sector is not the only one that will benefit from the expected results of the smart-MEMPHIS project. The energy harvesting system will also be tested in an industrial application: a wireless sensor network for structural health monitoring (SHM). Structural health monitoring is the process of detecting changes in materials or complex structures, for example micro-cracks in aircraft wings. This process currently requires many various sensors to collect data. The smart-MEMPHIS project is developing a wireless sensor network with self-powering acoustic sensor nodes. SHM will increase the safety of the monitored structures as it will identify any tiring, weakening or damage to the structures before they fail catastrophically.

For more information, please contact

Dr. Pirjo Pasanen, Spinverse Oy, +358 50 483 6250, pirjo.pasanen@spinverse.com

CTO Thorbjörn Ebefors, Silex Microsystems AB, + 46 707 323102, smart-MEMPHIS project coordinator

http://www.smart-memphis.eu

____________________________________________________________________________________________________________________________________

The smart-MEMPHIS consortium comprises nine partners across the value chain from universities and research organisations to a MEMS-manufacturer and both medical and industrial end users. The smart-MEMPHIS project started in December 2014 and will run for 3.5 years. The project is entirely funded by the European Union under the Horizon 2020 Framework programme with a budget of EURO 8.2 million.

The project is coordinated by the Swedish SME Silex Microsystems AB. Other partners include Acreo Swedish ICT, Chalmers Technical University and Linköping University from Sweden; Sorin CRM SAS and Vermon SA from France; Fraunhofer IZM and aixACCT Systems GmbH from Germany; and Spinverse Oy from Finland.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644378.

- Contact us -

Want to learn more how Spinverse could help you? Contact us now!



Pirjo Pasanen

Principal Consultant, Ph.D. +358 50 483 6250

- News -

Relevant posts

Public Funding Spinverse News

Economic growth needs innovation and long-term projects — where is the needed public funding?

18 Sep 2020

The Finnish economic success has been based on high-quality education and research. However, Finnish compani...

Public Funding Horizon Europe

Latest news about Horizon Europe and other growth opportunities beyond 2020

16 Sep 2020

Horizon Europe, the EU’s next framework programme for research and innovation, is approaching fast after t...

ecosystem Our People Spinverse News

A must-read: Ecosystem Handbook - The art of leading and creating impact

9 Sep 2020

In today’s rapidly changing world, very few organizations or people can make it alone. At best, orchestrat...

ICT Public Funding innovation ecosystem

Spinverse helped ELISE project to gain 12 M€ funding – project aims to make Europe powerhouse of AI

4 Sep 2020

The goal of the European multi-disciplinary ELISE project, recently funded with 12 M€ by the European Comm...

Client News SME EIC Accelerator

Revolutionary microphone technology from Norway

25 Aug 2020

Spinverse recently helped the Norwegian start-up sensiBel in securing the 2.5 M€ grant and 4.2 M€ equity...

Our People Spinverse News

Celebrating success: promotions and a new face in the Sustainable Industries team

24 Aug 2020

When our customers succeed, we succeed. So do our employees. The new promotions in the Sustainable Industrie...