Lighting the 21st Century

LED SOLUTIONS

Company Introduction

Three Business Units. Portfolio

Optogan's geography

Shareholders

- Founders of Optogan, well known scientists in solid state physics (more than 600 publications in international science magazines), pupils of Nobel prize winner Zhores Alferov <u>http://optogan.com/</u>
- RUSNANO, state-owned fund with \$10B allocated for investments into nanotechnology and SSL projects. RUSNANO was founded in 2007 for implementation of the government policy in the sphere of nanotechnologies. The Corporation acts as co-investor in nanotechnology projects with significant economic or social potential. http://www.rusnano.com

Photo: Nobel Prize winner Zhores Alferov with the Optogan Founders Maxim Odnobludov, Alexey Kovsh and Vladislav Bugrov

ONEXIM, one of Russia's largest private investment funds with more than \$10B allocated for investments, founded by Mikhail Prokhorov in May 2007 with a focus on innovative projects within the energy sector, SSL and nanotechnology. <u>http://www.onexim.org/</u>

RIC, fund of Saha Republic, with \$1B under its management <u>http://www.ricsakha.ru/</u>

OLED

All existing light sources in nature are point sources

OLED - the only natural source of uniform surface illumination

The essence of innovation is the use printing technology for the production of lighting systems based on organic light-emitting diodes with an optically active conjugated polymers and nanocomposites based on polymer-inorganic nanoparticles as a active layers.

The technology allows:

- Modulate an emission color by electric field
- Improve the parameters of OLED-based multilayer composite structures due to the effective radiative recombination in the polymer as well as in the nanoparticles and in the complexes formed by them.
- Reduce the characteristic relaxation times of charge carriers in composite structures
- Reduce the degradation of the hybrid structure and increase the service life of these OLED structures.

Optogan-OLS

Direction	Energy efficiency and energy saving
Aim	Create a reasonable costs, the most effective and trouble-free light sources based on organic light- emitting diodes
The essence of Innovation	The use of optically active conjugated polymers and nanocomposites based on polymer-inorganic nanoparticles in the printing technology of OLEDs. Development of an integrated intellectual control system of emission color.

Uniqueness of the technology:

- Glowing 3D surface of any reasonable shape and size
- Transparency in turned-odd state
- Color management of emission
- No need in additional optics and lens leads to reduction of radiation losses and to efficiency increase.
- Low (up to 10 times less) the cost of equipment and at the same time more productive
- Material utilization is 5 times better than spraying technology

Key parameters	2012	2013	2014	2015
Efficacy, Lm/W	60	80	100	150
CRI	88	92	95	95
Longevity (hours)	10 000	20 000	50 000	50 000
Device cost per Lumen \$/KLm	350	160	40	16
2011 Optogan Group				

Year	Milestone
2012	Technology developed
2013	IP protected
2014	Technology commercialized

LED SOLUTIONS

Thank you!

Lighting the 21st Century

the ZTSt Century